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Talk outline

dOnline learning:
o Regret minimization

o Full information
» Best expert

o Partial information
» Multi-Arm Bandits

JAdaptive pricing
o As Multi-Arm Bandits
o Patient Buyers

JMetric Movement Cost
o In Multi-Arm Bandits

o New algorithms
» Also, lower bounds
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Regret Minimization: Setting

JOnline decision making problem (single agent)

At each time, the agent:
o selects an action
o observes the loss/gain

JGoal: minimize loss (or maximize gain)

JEnvironment model:
o stochastic versus adversarial

JPerformance measure:
o optimality versus regret



Regret Minimization: Model

JActions A = {1, ... ,N}
UNumber time steps:t € {1, ... ,T}

JAt time step t:
o The agent selects a distribution p}over A
o Environment returns costs ¢/ € [0,1]
o Online loss:#t = Y, ¢/ p;
o Cumulative 10ss : Lyyjine = 2 £°
o Regret: Lontine — Lpest = Lontine — ml.inZt Cit

dinformation Models:
o Full information: observes every action’s cost
o Partial information: observes only its own cost




Stochastic Costs

(dStochastic Costs: JAnalysis sketch:

o for each action i, o Two actions

o cit are i.i.d. rv. (for diff. t) o Boolean cost (Bernoulli r.v.):
QFull information pzpi[;"l_zle] > gi

o Observe (cf, ..., Cx) o Concentration bound:
dGreedy Algorithm: Prlavgf > avgj] < e

o selects the action with the o Expected regret:

lowest average cost. o €E[n,]
> ny, =Y l(ay = 2)

o E[n,] = €72
o Regret: €1

t 1 t
© avg; —;Ztci

o a; = argmaxavgy



Arbitrary costs

JAny hope to say anything?

ASurprising results:
o Similar regert bounds to stochastic!

dModel:

o Algorithm:
» At each time selects distribution over actions
* Mixed action
o Adversary

» Select loss per action
e Can depend on the distribution!
» Loss can be arbitrarily high!



External regret

JRegret

O Loniine — Lpest
» If Lyest is high,

» Loniine can be high

JAverage regret:
(Lonline o Lbest)/T

o Goal: Average external
regret goes to zero
» No regret

o Hannan [1957]

JExplicit bounds

o Littstone & Warmuth
‘94
o CFHHSW ‘97
o External regret =
0(/TlogN)
» Similar to stochastic
* b1 =
* b2 =

NlR_r N~
ﬂlHﬂlH

_|_
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External Regret: Greedy

dSimple Greedy:

o Go with best action so far.

dFor simplicity loss is {0,1}
dLoss can be N times the l l l l

best action

o holds for any
deterministic online
algorithm

JCan not be worse:

O Lon/ine <N Lbest
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External Regret: Randomized Greedy

(JRandomized Greedy:

o Random best action.

Loss is In(N) times the
best action

JAnalysis:
o At time time ¢
o k; best actions

1
o Prob loss —
k¢

Per increase in best loss:

1/N + 1/(N-1) +... =In(N)

|
1
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External Regret: PROD Algorithm

JRegret is \/Tlog N
JPROD Algorithm:

o plays sub-best actions
o Uses exponential weights Wt
t
wf = (1—n)-
» Normalize weights
JAnalysis:
t _ t
© V'i = 2 W t VWit
ol = Zi:cit=1 i
o Wit = Wt —nFY)
» Also, expected loss: Ly, = > F,
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External Regret: Bounds Derivation

Bounding W' JdCombined bound:
(1-n)"min < W' exp{-n Loy }

Taking logarithms:

L_.log(1-n) < log(W")-nlL,y

dFinal bound:

LON—< Lmin+ anin+lOg(N)/r’

JOptimizing the bound:
n = \/log N/Lmin

JdLower bound:
W' > (1-n)Lmin

JUpper bound:

w' =w'n, (1-nF)

<w! [1, exp{-nF'}

= W' exp{-n Loy }

using 1-x < e”

Loy < Lmin + 2,/L,,;,log N

min
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External Regret: Summary

JHow surprising are the results ...
o Near optimal result in online adversarial setting
> very rear ...

o Lower bound: stochastic model

» stochastic assumption does not help ...
o Models an “improved” greedy

» Smoothed maximum

o An “automatic” optimization methodology
» Find the best fixed setting of parameters
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External Regret and classification

(dConnections to Machine Learning:
JH — the hypothesis class

cost — an abstract loss function
o no need to specify in advance

dLearning setting — online
o learner: observes point, predicts, observes loss

JRegret guarantee:
o compares to the best classifier in H.
o Given the sequence of inputs
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Partial Information

Multi-Arm Bandits



Partial Information

dPartial information (Multi-Arm Bandits):

o Agent selects action i
o Observes the loss of action i
o No information regarding the loss of other actions

JHow can we handle this case?
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Partial Information

dSimple reduction to Full Info
o Work in blocks of size B

o explore each action once in each block
» Random positions
o Otherwise uses Full Info action distribution

o At the end of a block:
» Feeds the explored actions to Full Info

JRegret:

o Regret of Full Info on T/B time steps
» each of magnitude in [0,B]

o Exploration regret NT/B
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Information model: Full versus Partial

r VL L

Full Information Regret Algorithm

!

sample

\

Partial Information

exploit
[




Information: Full versus Partial

JAnalysis:

o Regret of Fl on T/B time steps (each of size B)

» Exploitation Regret ~vVB T
» Exploration Regret N in block
» Number of blocks T /B

L Optimizing: Set B = N2/3T1/3
ORegret guarantee: N1/3T2/3

1 Benefit:

o Vanishing regret
o Non-optimal regret bound
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Information: Full versus Partial

dImportance Sampling:
o maintain weights as before.
o update the selected action k by loss ¢,/p,!
o Expectation is maintain
o Need to argue directly on the algorithm.

JUsed in: [ACFS] and others
o Regret Bound about VTN
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More elaborate regret notions

ATime selection functions [Blum & M]
o determines the relevance of the next time step
o identical for all actions
o multiple time-selection functions

JWide range regret [Lehrer, Blum & M]

o Any set of modification functions
» mapping histories to actions

(dMany more information models:
o Graph Observability
o Delayed feedback
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Adaptive Pricing



Pricing a single item:
Classical Model

Single seller
o Single item
o Unlimited supply

AStream of T buyers

o Buyer t has value v,

JAt time t:
o Seller offers price p,
o Buyer buysif v, = p,
» if buys, then revenue p,

27



Pricing a single item: Classic
Model

(JRevenue
o OnlineRevnue = Y., (v, = p,)p;

JRegret

o Compare to the best fixed price

o Revenue(p) = X 1(v, = p)p
o Regert = max Revenue(p) — OnlineRevenue
p

dSeller Objective
o Maximize Revenue
o Minimize Regret
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Pricing and Multi-Arm Bandits

Finite Set of action 4 A = Discrete Prices

At time t:
o Select actiona, € A

o Observe gain g,[a;] € [0,1]
dCumulative Gain:
dO0nlineGain = ), g¢[a;] Online Revenue
QGain(a) = X g¢[al

JRegret:
Regret = max Gain(a) — OnlineGain
a

I

Gain = I(v,2p,) p,

. onine e

29



Multi-Arm Bandit: Recall

dChoose the best action dPartial information
until now Estimating the gain
o With a “soft-max o Importance sampling:
AMaintain a distribution > g.la.]/pelac]
D¢ over actions o Unbiased estimator
o Change distribution slowly o Bound second moment
o Concentrate on the high » Lower bound
gains probabilities
AFull information Regret: VT K

o Exponential weights

o Regret /T log K

30



Multi-Arm Bandit and Pricing

dHas a history: JWhy not Regret = T'1/27?
JA Two-Armed Bandit Discretization
Theory of Market o number of prices T1/3
Pricing » Prices = actions
JKleinberg and o Discretization size T~1/3
Leighton: JRegret VKT + €T

o Use discrete prices
o Regret = T2/3
o Upper and lower bound

oK=TY3; e=T"1/3
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Patient buyers

(JProcrastination is the hallmark
of human nature

o And it even has good effects

dModeling:
o Buyers are not: “buy-it or leave-it”
o Allow buyers laxity over time
o Trying to buy at the best price

(AStrategic issues:
o Seller:
» need to plan for strategic buyers

o Buyers: Need to anticipate seller
» Indirectly other buyers

32



Patient buyers

dOur Model:
(JEach buyer:

o has a (small) time window
o Buys at the best price in window

Seller

o Publishes prices in advance
» For the maximum window size

JBuyer strategy:

o Buy at the lowest price in its
window

> If below its value.

dSeller Strategy ?!
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Challenges for the seller

JChanging prices: é /I}\
o Increasing price: No problem |
o Decreasing price: might lose revenue

AMAB with switching cost:

o Pay 1 each time you change an action

o Benchmark (by definition) does not
change action

i
1

JLower bound:

o MAB with switching cost
» [Dekel et al]
o Regret = Q(k1/3 T?/3)

» k actions, T time steps

o
S B
§ 1
2
) 1
1

,_
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Lower bound on the regret

(JReduction to switching Still need to take care of
cost: the feedback.

EISimpIe case: o Prices feedback is richer

o Three valuations {0, 2,1}

O WindO\fV size 2 Theorem (lower bound):
Elbl\/lerge.wnh random For patient buyers the
uyers: seller has regret at least

o value ¥ and window=1
o value 1 and window=2

JEach price reduction
o With prob. 7 Loses %5
o Otherwise identical

Q(TZ/B)
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Simple Block MAB Algorithm

dPartition time to blocks JOptimizing over

of size B continuous prices
o T /B blocks, k prices o Discretization regret T /k
dFix the price in each o Number of prices
block >k =Tl*
o Switching only between o Total Regret T'3/4
blocks
Standard regret bound B\/k(T/B) regret inside blocks

Inside: VBkT
2Betlween: T/B
= Optimize block size t t f
* B = (/)

1/372/3 T /B regret when switching blocks
= Regret k*/°T
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Improved MAB: metric space

JdWhere are we losing: AMetric over actions (prices):
o Discrete prices o Each action i has a price p;
o switching cost o Switching from p; to p; has
> Each has regret T2/3 cost
Together the regret is , P - Pjl ,
higher o A simple line metric over the
actions.
o T3/4
, dBenchmark:
JCan we do a better? o Best static price has no
dObservation: movement cost!

o Price change from p, to p,
o Loss is at most |p; — p,|
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Bounding the switching effect

JWhat happens if we JBasic idea:

ran a “standard” MAB o Change > 29 with prob < 2-
o Many switches o Fix the prob of the change
JGoal:
o Switch often to similar ~ (Look at the expectation
prices o Compensate for the slow
o Switch rarely to far changes
prices o Allow big changes in
Has also an intuitive distribution

appeal
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Tree Metric

dThe leafs are labeled by
numbers in [0,1]
o Equally spaced

Distance between leaves:

o (Size of subtree of LCA)/K

o Upper bounds the real
distance

» Very loose upper bound

(U Note: Benchmark does
not move

o Just need an upper bound

39



Tree Metric

£0EN

Dist=1/8



Tree Metric

Lo Ve.

Dist=1



Lazy sampling

dLazy sampling
o Given previous action
(price)
o Select a random subtree
» That includes it
» Geometric dist

o Sample only actions in
that subtree O

dMovement | —
o Move 2!/K with prob 27!
o Expected movement
(logK)/K
(ANeed to take care of
qguality!
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Analyzing the sampling

JFor a static distribution [ Analysis:
o OK, in expectation o Biased estimator A
(JOur case:

o Dynamic changing o Show that for any

distribution subtree:
dBasic idea: . ll{it E AS}] B
o Rebalance the subtree p:(A)

o Maintain ratios across

subtrees ) oEnough for the regret

. »3 analysis to go through!

43



Results for patient buyers

JUpper bound: JLower Bound:
Q) (maX(T2/3, \/kT)) 2 prices + patient
. . . buyers
Discretizing prices _
&P o O(T??)

o Additional regret T /k

A Optimizing for
discretization

JRegular buyers,
continuous price

Kleinberg & Leighton
— T1/3 O
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What about general Metric ???

T T
MRegret = E z £ (xp) — @éﬂz: £ (x™) + dist(xg, Xp—1)
X
t=1 t=1

JRINEIRS




Moving to general metric spaces

Lower bound Upper bound
dPacking number N,,(¢) UWCovering number N, (€)
OLower bound: o Bound using HST
1 12 oletC = supe- N.(€)
Q(e3N,(€)3T3) >0
o Run Slowly-Moving-
dLlet P = supe - Ny(€) Bandit
e>0

QLower bound: HUpper bound:

Q(PY/3T2/3) O (max(VKT,CY/3T?/3)

d
Non discrete metric spaces: Minkowski dimension O (T d+1)
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Concluding remarks:
Patient Buyers and MAB

A Patient buyers
o More realistic buyer model

JFixed window
o Discounted utility?

dMetric MAB

o Competitive analysis and regret minimization

JOther Applications
o other online problems?
o Losses correlated over time

47



