Adaptive pricing, online learning and metric movement cost Yishay Mansour

Many thanks to my co-authors:

Nicolo Cesa-Bianchi, Avrim Blum, Michal Feldman, Tomer Koren, Roi Livni, Gilles Stoltz, and Aviv Zohar

Talk outline

Online learning:

 Regret minimization
 Full information
 Best expert
 Partial information
 Multi-Arm Bandits

Adaptive pricing

 As Multi-Arm Bandits
 Patient Buyers

 Metric Movement Cost

 In Multi-Arm Bandits
 New algorithms
 Also, lower bounds

MININEZATION

[Blum & M] and [Cesa-Bianchi, M & Stoltz]

Regret Minimization: Setting

Online decision making problem (single agent) At each time, the agent: \circ selects an action observes the loss/gain Goal: minimize loss (or maximize gain) Environment model: stochastic versus <u>adversarial</u> Performance measure: o optimality versus regret

Regret Minimization: Model

 $\Box Actions A = \{1, \dots, N\}$

DNumber time steps: $t \in \{1, ..., T\}$

At time step *t*:

- \circ The agent selects a distribution p_i^t over A
- \circ Environment returns costs $c_i^t \in [0,1]$
- \circ Online loss: $\ell^t = \sum_i c_i^t p_i^t$
- Cumulative loss : $L_{online} = \sum_t \ell^t$
- \circ Regret: $L_{online} L_{best} = L_{online} \min_{i} \sum_{t} c_{i}^{t}$

□Information Models:

- <u>Full information</u>: observes every action's cost
- <u>Partial information</u>: observes only its own cost

Stochastic Costs

Stochastic Costs:

 for each action *i*,
 *c*_i^t are *i.i.d.* r.v. (for diff. *t*)

 Full information

 Observe (*c*_1^t, ..., *c*_N^t)

 Greedy Algorithm:

 selects the action with the

- lowest average cost.
- $\circ avg_i^t = \frac{1}{t} \sum_t c_i^t$ $\circ a_t = \arg\max avg_i^t$

Analysis sketch:

- Two actions
- \circ Boolean cost (Bernoulli r.v.): $\Pr[c_i = 1] = p_i$ $p_2 - p_1 = \epsilon > 0$
- Concentration bound: $\Pr[avg_1^t > avg_2^t] < e^{-\epsilon^2 t}$
- Expected regret:

 $\circ \epsilon E[n_2]$ $\succ n_2 = \sum_t I(a_t = 2)$ $\circ E[n_2] \approx \epsilon^{-2}$ $\circ \text{ Regret: } \epsilon^{-1}$

Arbitrary costs

Any hope to say anything?

Surprising results:

O Similar regert bounds to stochastic!

□Model:

• Algorithm:

> At each time selects distribution over actions

• Mixed action

 \circ Adversary

Select loss per action

• Can depend on the distribution!

Loss can be arbitrarily high!

External regret

Regret

Explicit bounds ○ Littstone & Warmuth '94 ○ CFHHSW '97 \circ External regret = $O(\sqrt{T \log N})$ \succ Similar to stochastic • $p_1 = \frac{1}{2} - \frac{1}{\sqrt{T}}$ • $p_2 = \frac{1}{2} + \frac{1}{\sqrt{T}}$

External Regret: Greedy

Simple Greedy:

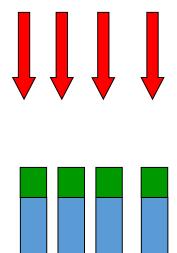
 Go with best action so far.

 For simplicity loss is {0,1}
 Loss can be N times the best action

 holds for any
 deterministic enline

- deterministic online algorithm
- Can not be worse:

 $\circ L_{online} < N L_{best}$



External Regret: Randomized Greedy

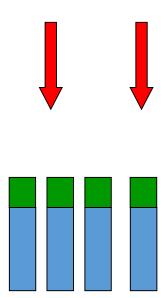
Randomized Greedy:

 Random best action.

 Loss is ln(N) times the best action
 Analysis:

- \circ At time time t
- $\circ k_t$ best actions
- \circ Prob loss $\frac{1}{k_t}$

Per increase in best loss: $1/N + 1/(N-1) + ... \approx ln(N)$



External Regret: PROD Algorithm

\BoxRegret is $\sqrt{T \log N}$

PROD Algorithm:

- \circ plays sub-best actions
- \circ Uses exponential weights
 - $w_i^t = (1-\eta)^{c_i^t}$

Normalize weights

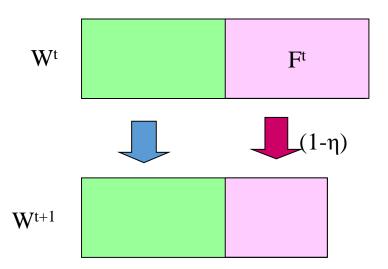
Analysis:

$$\circ W^{t} = \sum_{i} w_{i}^{t}$$

$$\circ F^{t} = \sum_{i:c_{i}^{t}=1} w_{i}^{t}$$

$$\circ W^{t+1} = W^{t}(1 - \eta F^{t})$$

$$\succ \text{ Also, expected loss: } L_{\text{ON}} = \sum F_{t}$$



External Regret: Bounds Derivation

Bounding W' Lower bound: $W^T > (1-\eta)^{L_{min}}$ Upper bound: $W^{T} = W^{1} \Pi_{t} (1 - \eta F^{t})$ $\leq W^1 \Pi_t exp\{-\eta F^t\}$ $= W^1 \exp\{-\eta L_{ON}\}$ using $1 - x \le e^{-x}$

Combined bound: $(1-\eta)^{L_{min}} \leq W^1 \exp\{-\eta L_{ON}\}$ **Taking logarithms**: $L_{min}\log(1-\eta) \leq \log(W^1) - \eta L_{ON}$ Final bound: $L_{ON} \leq L_{min} + \eta L_{min} + \log(N)/\eta$ Optimizing the bound: $\eta = \sqrt{\log N / L_{min}}$ $L_{ON} \leq Lmin + 2\sqrt{L_{min}\log N}$

External Regret: Summary

□How surprising are the results ...

- Near optimal result in online adversarial setting
 ➢ very rear ...
- Lower bound: stochastic model

➤ stochastic assumption does not help ...

 \odot Models an "improved" greedy

Smoothed maximum

- An "automatic" optimization methodology
 - Find the best fixed setting of parameters

External Regret and classification

- **Connections to Machine Learning:**
- $\Box H$ the hypothesis class
- □*cost* an abstract loss function
 - \odot no need to specify in advance
- □Learning setting online
 - learner: observes point, predicts, observes loss
- □ Regret guarantee:
 - compares to the best classifier in *H*.
 - **O** Given the sequence of inputs

Partial Information

Multi-Arm Bandits

Partial Information

Partial information (Multi-Arm Bandits):

- \circ Agent selects action i
- \circ Observes the loss of action i
- \odot No information regarding the loss of other actions

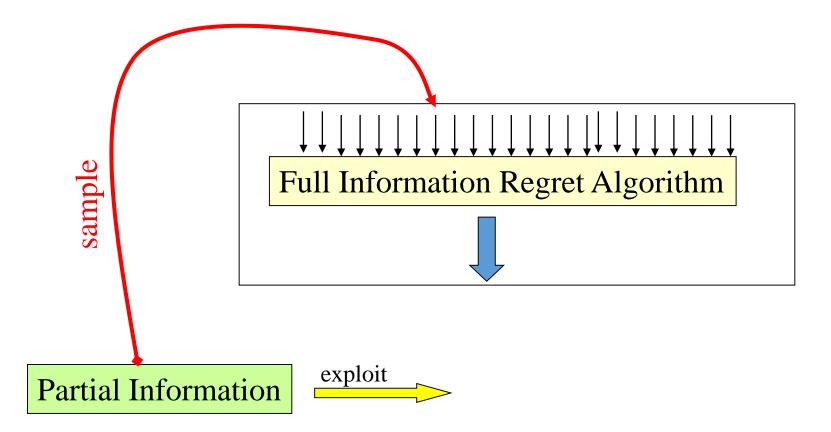
How can we handle this case?

Partial Information

Simple reduction to Full Info • Work in blocks of size B explore each action once in each block Random positions Otherwise uses Full Info action distribution \circ At the end of a block: Feeds the explored actions to Full Info **Regret**: • Regret of Full Info on *T/B* time steps \triangleright each of magnitude in [0,B]

Exploration regret NT/B

Information model: Full versus Partial



Information: Full versus Partial

Analysis:

• Regret of FI on T/B time steps (each of size B)

 \succ Exploitation Regret ~ $\sqrt{B T}$

 \succ Exploration Regret N in block

 \succ Number of blocks T/B

Optimizing: Set $B = N^{2/3}T^{1/3}$

QRegret guarantee: $N^{1/3}T^{2/3}$

Benefit:

- Vanishing regret
- Non-optimal regret bound

Information: Full versus Partial

□Importance Sampling:

- \circ maintain weights as before.
- \circ update the selected action k by loss c_k^t/p_k^t
- \odot Expectation is maintain
- \odot Need to argue directly on the algorithm.

□Used in: [ACFS] and others \circ Regret Bound about \sqrt{TN}

More elaborate regret notions

Time selection functions [Blum & M]

 determines the relevance of the next time step
 identical for all actions
 multiple time-selection functions

 Wide range regret [Lehrer, Blum & M]

 Any set of modification functions
 mapping histories to actions

□ Many more information models:

- Graph Observability
- \circ Delayed feedback

Adaptive Pricing

Pricing a single item: Classical Model

□Single seller ○ Single item Unlimited supply □ Stream of *T* buyers \circ Buyer t has value v_t At time *t*: \circ Seller offers price p_t \circ Buyer buys if $v_t \geq p_t$ \succ if buys, then revenue p_t

Pricing a single item: Classic Model

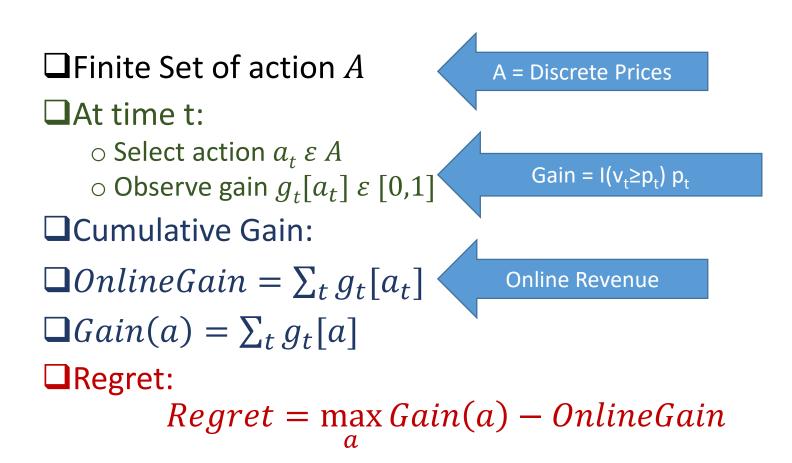
Revenue

 $\circ OnlineRevnue = \sum_{t} I(v_t \ge p_t)p_t$

Regret

○ Compare to the best fixed price
 ○ Revenue(p) = ∑_t I(v_t ≥ p)p
 ○ Regert = max Revenue(p) - OnlineRevenue
 □ Seller Objective
 ○ Maximize Revenue
 ○ Minimize Regret

Pricing and Multi-Arm Bandits



Multi-Arm Bandit: Recall

Choose the best action until now

 \circ With a "soft-max"

- $\Box Maintain a distribution$ $<math>p_t$ over actions
 - \odot Change distribution slowly
 - Concentrate on the high gains
- □ Full information
 - Exponential weights

 \circ Regret $\sqrt{T \log K}$

■ Partial information ■ Estimating the gain • Importance sampling: $p_{t}[a_{t}]/p_{t}[a_{t}]$ • Unbiased estimator • Bound second moment ▶ Lower bound

probabilities

QRegret: $\sqrt{T K}$

Multi-Arm Bandit and Pricing

□ Has a history:

- □ A Two-Armed Bandit Theory of Market Pricing ○ ROTHSCHILD, 1974
- Contemporation Kleinberg and Leighton:
 - Use discrete prices
 - \circ Regret = $T^{2/3}$
 - Upper and lower bound

 $\Box Why not Regret = T^{1/2}?$ Discretization \circ number of prices $T^{1/3}$ \geq Prices = actions Additional loss \odot Discretization size $T^{-1/3}$ \Box Regret $\sqrt{KT} + \epsilon T$ $\circ K = T^{1/3}$; $\epsilon = T^{-1/3}$

Patient buyers

Procrastination is the hallmark of human nature

 \circ And it even has good effects

□Modeling:

- Buyers are not: "buy-it or leave-it"
- $\,\circ\,$ Allow buyers laxity over time
- $\,\circ\,$ Trying to buy at the best price

Strategic issues:

- \circ Seller:
 - need to plan for strategic buyers
- $\,\circ\,$ Buyers: Need to anticipate seller
 - Indirectly other buyers

Patient buyers

- Our Model:
- Each buyer:
 - o has a (small) time window
 - \odot Buys at the best price in window
- Seller
 - Publishes prices in advance
 For the maximum window size
- Buyer strategy:
 - Buy at the lowest price in its window
 - \succ If below its value.
- Seller Strategy ?!

Challenges for the seller

Changing prices:

- $\circ\,$ Increasing price: No problem
- Decreasing price: might lose revenue
- **MAB** with switching cost:
 - $\,\circ\,$ Pay 1 each time you change an action
 - Benchmark (by definition) does not change action

Lower bound:

- MAB with switching cost
 - ➢ [Dekel et al]
- $\circ \operatorname{Regret} = \Theta(k^{1/3} T^{2/3})$
 - $\succ k$ actions, T time steps

Lower bound on the regret

- Reduction to switching cost:
- □Simple case:
 - \circ Three valuations {0, $\frac{1}{2}$,1}
 - Window size 2
- Merge with random buyers:
 - value ½ and window=1
 value 1 and window=2
 - o value 1 and window=2

Each price reduction
 With prob. ¼ Loses ½
 Otherwise identical

Still need to take care of the feedback.
 O Prices feedback is richer

<u>Theorem</u> (lower bound): For patient buyers the

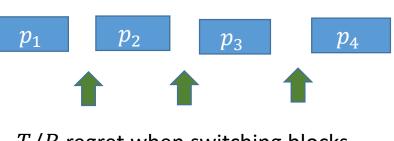
seller has regret at least

 $\Omega(T^{2/3})$

Simple Block MAB Algorithm

- Partition time to blocks of size B
 - $\circ T/B$ blocks, k prices
- Fix the price in each block
 - Switching only between blocks
- Standard regret bound
 - \circ Inside: \sqrt{BkT}
 - \circ Between: T/B
- Optimize block size
- $B = (T/k)^{1/3}$
 - Regret $k^{1/3}T^{2/3}$

Optimizing over continuous prices \circ Discretization regret T/k \circ Number of prices $\gg k = T^{1/4}$ \circ Total Regret $T^{3/4}$



 $B\sqrt{k(T/B)}$ regret inside blocks

T/B regret when switching blocks

Improved MAB: metric space

❑Where are we losing:
 ○ Discrete prices
 ○ switching cost
 > Each has regret T^{2/3}

Together the regret is higher $T^{3/4}$

Can we do a better?

Observation:

- \circ Price change from p_1 to p_2
- \circ Loss is at most $|p_1 p_2|$

Metric over actions (prices):
 Each action *i* has a price *p_i* Switching from *p_i* to *p_j* has cost

 $|p_i - p_j|$

• A simple line metric over the actions.

Benchmark:

 Best static price has no movement cost!

Bounding the switching effect

Goal:

- Switch often to similar prices
- Switch rarely to far prices
- Has also an intuitive appeal

■Basic idea:

○ Change ≥ 2^d with prob ≤ 2^{-d}
○ Fix the prob of the change

□Look at the expectation

- Compensate for the slow changes
- Allow big changes in distribution

Tree Metric

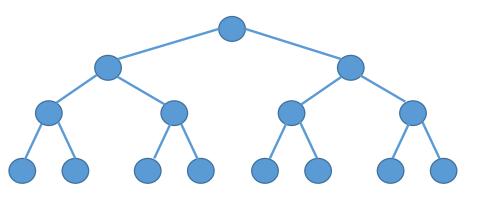
The leafs are labeled by numbers in [0,1]
• Equally spaced

Distance between leaves:

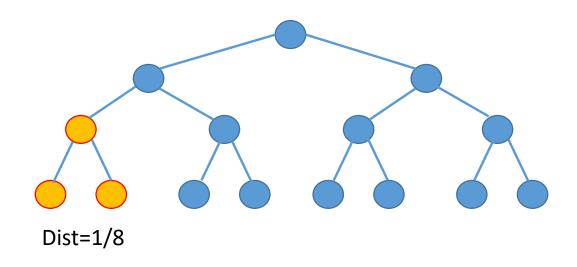
- \circ (Size of subtree of LCA)/K
- O Upper bounds the real distance

Very loose upper bound

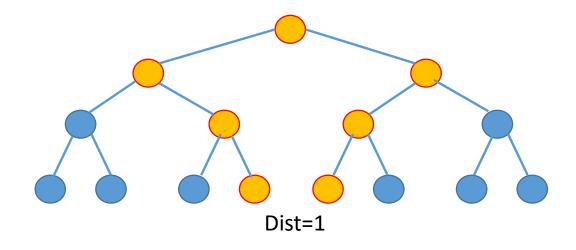
- Note: Benchmark does not move
 - Just need an upper bound



Tree Metric



Tree Metric



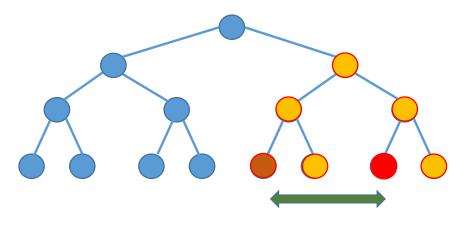
Lazy sampling

□Lazy sampling

- Given previous action (price)
- \circ Select a random subtree
 - That includes it
 - Geometric dist
- Sample only actions in that subtree

Movement

- \circ Move $2^i/K$ with prob 2^{-i}
- Expected movement (log K)/K
- Need to take care of quality!



Analyzing the sampling

□ For a static distribution ○ OK, in expectation

Our case:

 Oynamic changing distribution

Basic idea:

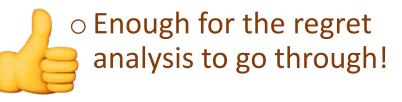
- Rebalance the subtree
- Maintain ratios across subtrees

Analysis:

 \circ Biased estimator

Show that for any subtree:

$$E\left[\frac{I\{i_t \in A_s\}}{p_t(A_s)}\right] = 1$$

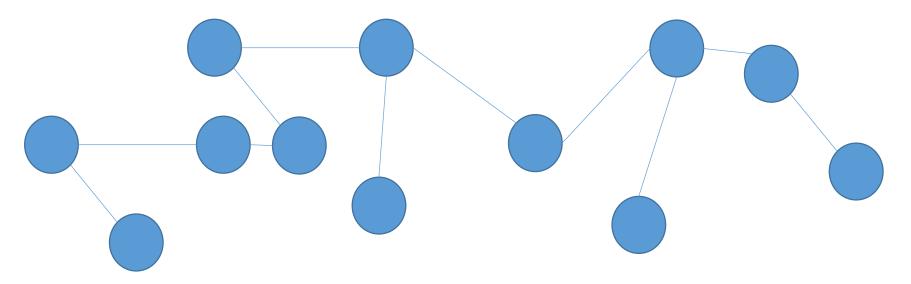


Results for patient buyers

□Upper bound: $\Theta\left(\max(T^{2/3},\sqrt{kT})\right)$ □Discretizing prices \circ Additional regret T/k□Optimizing for discretization $\circ k = T^{1/3}$ □ Lower Bound: □ 2 prices + patient buyers $\circ \widetilde{\Omega}(T^{2/3})$ □ Regular buyers, continuous price \circ Kleinberg & Leighton $\Omega(T^{2/3})$

What about general Metric ???

$$MRegret = \mathbb{E}\left[\sum_{t=1}^{T} \ell_t(x_t) - \min_{x^* \in A} \sum_{t=1}^{T} \ell_t(x^*) + dist(x_t, x_{t-1})\right]$$



Moving to general metric spaces

Lower bound **D**Packing number $N_p(\epsilon)$ Lower bound: $\Omega(\epsilon^{\frac{1}{3}}N_p(\epsilon)^{\frac{1}{3}}T^{\frac{1}{3}})$ $\Box \text{Let } P = \sup \epsilon \cdot N_p(\epsilon)$ $\epsilon > 0$ Lower bound: $\Omega(P^{1/3}T^{2/3})$

Upper bound

Covering number $N_c(\epsilon)$ \circ Bound using HST \circ Let $C = \sup_{\epsilon > 0} \epsilon \cdot N_c(\epsilon)$ $\epsilon > 0$ \circ Run Slowly-Moving-Bandit Upper bound: $\tilde{O}(\max(\sqrt{KT}, C^{1/3}T^{2/3}))$

Non discrete metric spaces: Minkowski dimension $O(T^{\overline{d+1}})$

d

Concluding remarks: Patient Buyers and MAB

Patient buyers

More realistic buyer model

Fixed window

O Discounted utility?

Metric MAB

 \odot Competitive analysis and regret minimization

Other Applications

- \circ other online problems?
- \odot Losses correlated over time